

The Internet Computer and its networks

Yotam, Yvonne-Anne, Rüdiger, May, 2022

We are hiring: dfinity.org/careers

Agenda

- 1) What is the IC?
- 2) What are its networking patterns and requirements?
- 3) Q&A for collaboration / applicability of SCION / Anapaya

What is the Internet Computer?

What is the Internet Computer?

Platform to run any computation, using blockchain technology for decentralisation and security

Developers and users interact directly with Canisters

Internet Computer

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are assigned to different subnets

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are assigned to different subnets

One subnet is special: it host the **Network Nervous System (NNS)** canisters which govern the IC

ICP token holders vote on

. . .

- Creation of new subnets
- Upgrades to new protocol version
- Replacement of nodes

Fast Growing Ecosystem

IC Networking

DFINITY Confidential: For Internal Use Only

DFINITY

Requirements 1/2

Bounded-time/eventual delivery despite Byzantine faults

Up to a certain maximum volume of valid artifacts that are not dropped by any honest node reaches all honest nodes in bounded time/eventually despite attacks (under certain network assumptions).

Reserved resources for different components/peers

Memory/bandwidth/CPU guarantees for different components and peers

Prioritization for different artifacts

Not all artifacts are equal, different priorities depending on attributes (e.g., type, size, round,...). Priorities change over time.

Requirements 2/2

High efficiency

High throughput is more important than low latency

Avoid duplicates: don't waste bandwidth downloading same artifact "too many times"

DOS/SPAM resilience

Bad participants cannot prevent progress.

Low accessibility requirements for users

Support browser and IPv4 access

Networking of the IC

• Geographically distributed: datacenters all over the world

Networking of the IC

- **Geographically distributed**: datacenters all over the world
- **Decentralized**: a subnet is composed of nodes in different datacenters
 - \rightarrow Some nodes in the same subnet may be very far apart
 - \rightarrow Independent node providers with different skills and DC contracts
 - \rightarrow Communication over public internet
 - High latencies possible
 - Many transient network failures
- Secure: a subnet should make progress even if up to $\frac{1}{3}$ of the nodes are faulty / malicious
 - \rightarrow We can't trust specific nodes (e.g., geographically close by)
 - \rightarrow Even nodes in the same subnet should not trust each other

Intra-Subnet P2P Networking

- Peer-to-peer network of nodes
 - Gossip protocol for artifact distribution
 - Advert Request Response
 - Eventual / bounded time delivery with priorities (~reliable broadcast optimized for Consensus)

- Untrusted communication
 - TLS / TCP to all nodes in the subnet, certificates in NNS
 - Authenticity and integrity of artifacts can be verified by higher layers
 - Nodes can still do evil

Xnet Inter-Subnet Networking

- Canisters on one subnet can send messages to canisters on other subnets, called "cross-net communication" (or Xnet)
- Currently this is done quite naively, where any node on one subnet can fetch messages from any other node on the other subnet with a HTTPS request
- We can improve this on several aspects:
 - Scalability: decide which nodes connect to which, and when
 - Performance: leverage the fact that some nodes in both subnets are close to each other (content is signed by the subnet, so we do not need to trust a specific node up to some extent)

Numbers...

Application Layer:

- 60K+ canisters (smart contracts/dapps)
- > 2 Mio registered identities
- ~1TB total state (and counting...)

Application Layer:

- 60K+ canisters (smart contracts/dapps)
- > 2 Mio registered identities
- ~1TB total state (and counting...)

Governance:

- So far:
 - 56K+ NNS proposals
 - 3.4M+ ICP transactions

<u>Consensus</u>

- 758M+ blocks created
- ~34 blocks per second
- ~2800 transactions per second

Network Layer:

- 477 nodes
 - From 54 node providers
- 35 subnets
 - 40 nodes in NNS subnet
 - 13 nodes in App subnets
- Avg ²/₃ dissemination latency:
 - NNS avg=1.39s, 95%=3.3s
 - App avg=0.57s, 95%=1.1s

Testnets

DFINITY-internal infrastructure

- Deploy complete IC instances in our 5 data centers (2 more in May)
 - Chicago, San Francisco, Des Moines, Frankfurt, Zurich, ..
- Variable size and VM capabilities
- Can be used for experiments, metrics, correctness and performance tests

votam.harchol@dfinity.org

vvonneanne.pignolet@dfinity.org

ruediger.birkner@dfinity.org

We are hiring: dfinity.org/careers

More information

• Infographic: <u>here</u>

• Technical Library: <u>here</u> (videos of talks) and <u>here</u> (blogposts)

• 200,000,000 CHF Developer Grant Program here

• DFINITY SDK: <u>here</u>

